

COMPRESSORES PARAFUSO

PARTE 1

Tradução e adaptação da Engenharia de Aplicação da Divisão de Contratos YORK REFRIGERAÇÃO.

Introdução

Os compressores parafuso são hoje largamente usados em refrigeração industrial para a compressão de amônia e outros gases. Conceitualmente simples, a geometria dessas máquinas é de difícil visualização, e muitas pessoas utilizam os compressores parafuso, tendo somente uma vaga idéia de como eles realmente operam. Uma compreensão dos princípios básicos de sua operação irá contribuir para a sua correta utilização, evitando problemas e alcançando um melhor desempenho global da instalação.

Construção

Um compressor parafuso típico, selado com óleo, é uma máquina de deslocamento positivo que possui dois rotores acoplados, montados em mancais para fixar suas posições na câmara de trabalho numa tolerância estreita em relação à cavidade cilíndrica. O rotor macho tem um perfil convexo, ao contrário do rotor fêmea, que possui um perfil côncavo. A forma básica dos rotores é semelhante à uma rosca sem-fim, com diferentes números de lóbulos nos rotores macho e fêmea (**Figura 1**). Freqüentemente, os rotores macho têm 4 e os fêmeas 6. Alguns compressores com tecnologia mais recente, possuem a configuração 5+7. Qualquer um dos dois rotores pode ser impulsionado pelo motor.

Quando o rotor fêmea é acoplado ao motor com uma relação entre os lóbulos de 4+6, a capacidade é 50 % maior que o acoplamento feito no rotor macho, sob as mesmas condições. O torque é transferido diretamente de rotor para rotor e o sentido da rotação é fixo. O dispositivo de acionamento é geralmente conectado ao rotor macho, e este aciona o rotor fêmea por meio de uma película de óleo.

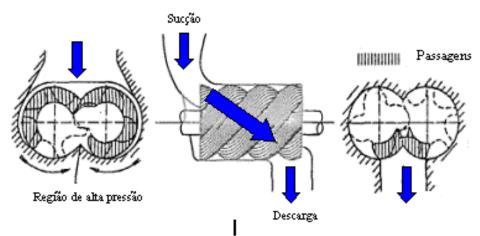


Figura 1 : Geometria básica do compressor parafuso.

O ciclo de operação possui três fases distintas :

- sucção;
- compressão;
- descarga.

Vedação

Todos os compressores parafuso utilizados em refrigeração utilizam injeção de óleo na câmara de compressão para lubrificação, vedação e resfriamento. A vedação entre os diferentes níveis de pressão compreende uma estreita faixa entre o engrenamento dos rotores e a periferia dos mesmos na câmara de compressão. O óleo é injetado diretamente na câmara de compressão em uma quantidade suficiente, de forma a minimizar o vazamento e resfriar o gás. Posteriormente, este óleo é separado do gás em um separador de óleo.

A utilização da quantidade adequada de óleo, permite que este absorva a maioria do calor proveniente da compressão, fazendo com que a temperatura de descarga seja baixa, mesmo quando a razão de compressão for alta. Por exemplo, operando numa razão de compressão 20:1 em simples estágio com amônia sem injeção de óleo, a temperatura de descarga pode chegar a 340°C. Com o resfriamento de óleo, esta mesma temperatura não excede 90°C. Entretanto, operando a 20:1 ou mesmo numa razão mais alta e em simples estágio, não há como superar a eficiência dos sistemas de duplo estágio, que não danificam o compressor. As instalações com sistema de duplo estágio são bastante comuns hoje em dia.

Princípios de Operação

Um compressor parafuso pode ser descrito como uma máquina de deslocamento positivo com dispositivo de redução de volume. Esta ação é análoga à de um compressor alternativo.

É útil referir-se ao processo equivalente efetuado por um compressor alternativo, para se entender melhor como funciona a compressão em um compressor parafuso. O gás é comprimido simplesmente pela rotação dos rotores acoplados. Este gás percorre o espaço entre os lóbulos enquanto é transferido axialmente da sucção para a descarga.

Sucção

Quando os rotores giram, os espaços entre os lóbulos se abrem e aumentam de volume. O gás então é succionado através da entrada e preenche o espaço entre os lóbulos, como na **Figura 2**. Quando os espaços entre os lóbulos alcançam o volume máximo, a entrada é fechada.

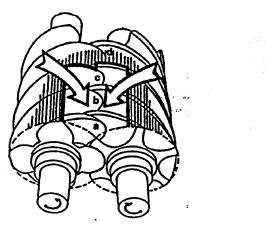


Figura 2 : Sucção

Este processo é análogo à descida do pistão num compressor alternativo (Figura 3).

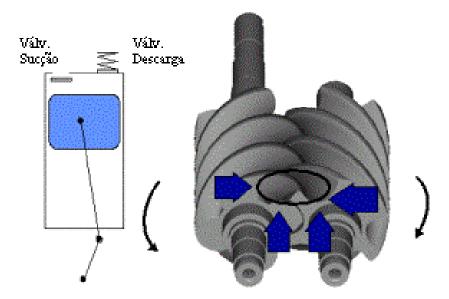


Figura 3 - Processo de Sucção

O refrigerante admitido na sucção fica armazenado em duas cavidades helicoidais formadas pelos lóbulos e a câmara onde os rotores giram. O volume armazenado em ambos os lados e ao longo de todo o comprimento dos rotores é definido como volume de sucção (V_s) . Na analogia com o compressor alternativo, o pistão alcança o fundo do cilindro e a válvula de sucção fecha, definindo o volume de sucção V_s . Isto pode ser visto na **Figura 4**.

O deslocamento volumétrico do compressor alternativo é definido em termos do volume da sucção, pela multiplicação da área da cavidade pelo percurso do cilindro e pelo número deles. No caso do compressor parafuso, este deslocamento é dado pelo volume da sucção por fio, vezes o número de lóbulos do motor acionado.

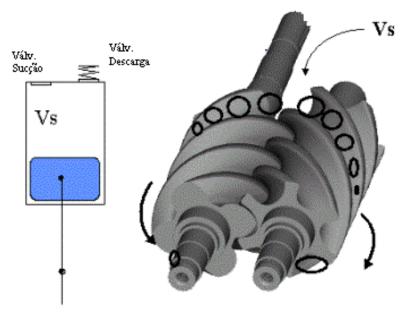


Figura 4: Volume máximo na sucção.

Compressão

Os lóbulos do rotor macho começarão a encaixar-se nas ranhuras do rotor fêmea no fim da sucção, localizada na traseira do compressor. Os gases provenientes de cada rotor são unidos numa cunha em forma de "V", com a ponta desse "V" situada na intersecção dos fios, no fim da sucção, como mostrado na **Figura 5**.

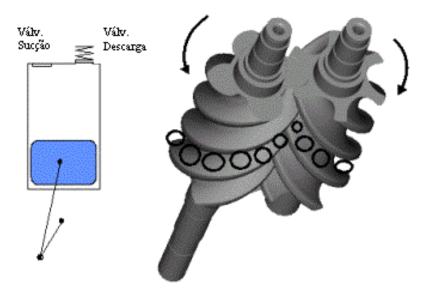


Figura 5 : Início da compressão.

Posteriormente, em função da rotação do compressor, inicia-se a redução do volume no "V", ocorrendo a compressão do gás. O ponto de intersecção do lóbulo do rotor macho e da ranhura do rotor fêmea é análogo à compressão do gás pelo pistão em um compressor alternativo (ver a **Figura 6**).

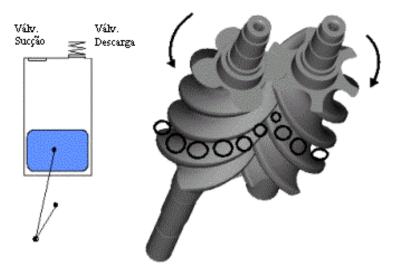


Figura 6 : Continuação da compressão

Descarga

Em um compressor alternativo, este processo começa quando da abertura da primeira válvula de descarga. Como a pressão no cilindro excede a pressão acima da válvula, esta se abre, permitindo que o gás comprimido seja empurrado para a descarga. O compressor parafuso não possui válvulas para determinar quando a compressão termina: a localização da câmara de descarga é que determina quando isto acontece, como mostrado na **Figura 7**. O volume do gás nos espaços entre os lóbulos na porta de descarga é definido como *volume de descarga* (V_d).

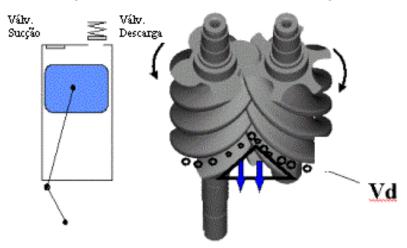


Figura 7: Início da descarga

São utilizadas duas aberturas: uma para descarga radial na saída final da válvula de deslizamento e uma para descarga axial na parede de final da descarga. Estas duas acarretam uma liberação do gás comprimido internamente, permitindo que seja jogado na região de descarga do compressor. O posicionamento da descarga é muito importante pois controla a compressão, uma vez que determina a razão entre volumes internos (V_i) . Para se atingir a maior eficiência possível, a razão entre volumes deve possuir uma relação com a razão entre pressões.

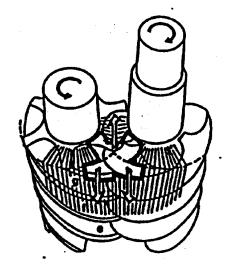


Figura 8 : Descarga

Em um compressor alternativo, o processo de descarga é finalizado quando o pistão alcança o ponto superior da câmara de compressão e a válvula de descarga se fecha. No compressor parafuso, isto ocorre quando o espaço antes ocupado pelo gás é tomado pelo lóbulo do rotor macho (ver **Figura 9**).

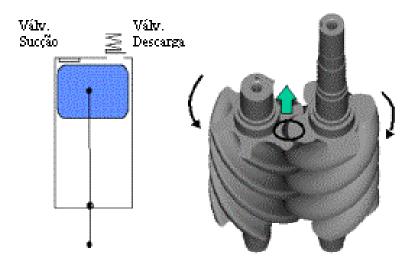


Figura 9 – Fim da descarga

Os compressores alternativos sempre têm uma pequena quantidade de gás (espaço morto) que é deixado no topo do cilindro de compressão e se expande no próximo ciclo, desta forma, ocupando um espaço que poderia ser utilizado para aumentar a massa de refrigerante succionado. No final da descarga de um compressor parafuso, nenhum volume "nocivo" permanece no interior da câmara de compressão, ou seja, todo o gás é jogado para fora. Esta é uma razão que faz com que os compressores parafuso sejam capazes de operar com razões de compressão mais altas do que os compressores alternativos.

Razão entre Volumes

Em um compressor alternativo, as válvulas de descarga abrem quando a pressão no cilindro excede a pressão na descarga. Pelo fato do compressor parafuso não possuir válvulas, a localização da câmara de descarga determina a máxima pressão que será conseguida nos lóbulos, antes do gás ser empurrado para fora.

A razão entre volumes é uma característica de projeto fundamental em todos os compressores parafuso. O próprio compressor é um dispositivo de redução de volume. A comparação entre o volume de gás na sucção (V_s) e o volume de gás na câmara de compressão quando a descarga se abre define a razão de redução de volumes do compressor (V_i) , que determina a razão de pressão do compressor através das relações abaixo :

$$V_i = V_s/V_d$$

onde : V_i = razão entre volumes

 V_s = volume na sucção V_d = volume na descarga

 $P_i = V_i \cdot c_p$

onde : P_i = razão entre pressões

c_p = calor específico do gás

Somente a pressão de sucção e a razão entre volumes definem o nível de pressão do gás antes da abertura da câmara de descarga. Entretanto, em todos os sistemas de refrigeração, a pressão de descarga do sistema é determinada pela temperatura de condensação, e a temperatura de evaporação determina a pressão de sucção.

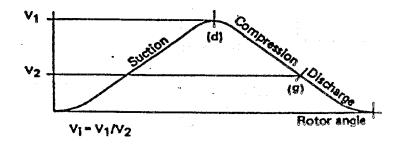


Figura 10 – Volume dos espaços entre lóbulos

Se a razão entre volumes do compressor for muito alta para uma dada condição de operação, a descarga do gás tornar-se-á muito longa e a pressão ficará acima da pressão de descarga.

Este fenômeno é denominado *sobre-compressão* e é representado por um diagrama pressão-volume, conforme apresentado na **Figura 11**. Neste caso, o gás é comprimido acima da pressão de descarga e quando ocorre a abertura da descarga, a alta pressão do gás faz com que ocorra a expansão do refrigerante para a tubulação de descarga, fora do compressor. Isto acarreta um trabalho maior do que se a compressão tivesse sido interrompida quando a pressão interna fosse igual a pressão na câmara de descarga.

Figura 11 : Sobre-compressão - Diagrama P x V.

Quando a razão entre volumes é muito baixa para as condições de operação do sistema, isto é chamado *sub-compressão* e está representada na **Figura 12**. Neste caso a abertura da porta de descarga acontece antes que a pressão do gás alcance a pressão de descarga. Isto faz com que o gás que estava do lado de fora do compressor invada a câmara de compressão, elevando a pressão imediatamente para o nível de pressão da descarga. O compressor tem que trabalhar com um nível de pressão mais alto, no lugar de trabalhar com uma gradual elevação do nível de pressão.

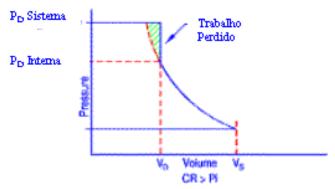


Figura 12 : Sub-compressão - Diagrama P x V.

Nos dois casos, o compressor ainda funcionará, e o mesmo volume de gás será deslocado, porém com uma potência requerida maior do que aquela que seria utilizada se as aberturas de descarga estivessem localizadas corretamente, de modo a equiparar a razão entre volumes com a necessidade do sistema. Isto gera um custo de energia maior. Projetos de razão entre volumes variável são usados para otimizar a localização da câmara de descarga e minimizar a potência requerida.

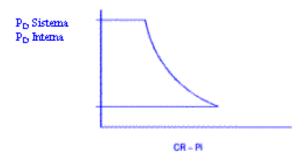


Figura 13 : Compressão ideal - Diagrama P x V.

Bibliografia:

Pillis, Joseph - SCREW COMPRESSORS BASICS, YORK Refrigeration Technical Description of FV19D - SABROE REFRIGERATION AB.

Elaborado por Joseph Pillis da YORK REFRIGERATION - SCREW COMPRESSORS BASICS.

Tradução e adaptação da Engenharia de Aplicação da Divisão de Contrato. YORK Refrigeration – Joinville, SC, Brasil.